N4 $B-\mathrm{H} 4 \mathrm{~N} F \cdots$ O8B	0.86	$3.11(2)$	145	vii
N5B-H5N $B \cdots$ O9 B	0.94	$3.09(2)$	168	
N6B-H6NE O1B	1.02	$2.94(1)$	160	vii
N6B-H6N $F \cdots$ O5A	$0.63(1)$	$3.02(2)$	144	ii

Symmetry codes: (i) $x, y, z-1$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iii) $-x+1$, $-y+1,-z+1$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z-1$; (v) $-x+\frac{1}{2}, y+\frac{1}{2},-z+1$; (vi) $x+\frac{1}{2},-y+\frac{1}{2}, z+1$; (vii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+2$.

Compound (I) was obtained by treating $\mathrm{Co}(\mathrm{sep}) \mathrm{Cl}_{3}$ (Bacchi, Ferranti \& Pelizzi, 1993) with an equivalent amount of $\mathrm{Ag}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ in aqueous solution; AgCl was filtered off and after slow evaporation compound (I) precipitated in crystalline form. The structure was solved and refined with standard procedures; all nonH atoms were refined anisotropically. H atoms were localized by difference Fourier maps and were refined isotropically in a full-matrix least-squares cycle except for $\mathrm{H} 1 \mathrm{~N}, \mathrm{H} 6 \mathrm{~N}$ and H 2 O 1 which did not show a steady refinement. All H atoms were held fixed in the last least-squares cycles to achieve a better convergence.

Compound (II) was prepared as for (I): a chloride complex obtained by employing a smaller amount of NH_{3} and $\mathrm{CH}_{2} \mathrm{O}$ in the step involving the formation of the ligand cage was treated with $\mathrm{Ag}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$. The observed threshold $I>2 \sigma(I)$ is used only for calculating $R_{\text {obs }}$ etc., for comparison with refinements on F. The refinement was performed with anisotropic thermal parameters for the $\mathrm{Co}, \mathrm{P}, \mathrm{N}$ and O atoms of molecule A, for the $\mathrm{Co}, \mathrm{P} 2, \mathrm{P} 3$ atoms of molecule B and for the O atoms of the water molecules. The remaining atoms were refined isotropically. Methylene hydrogens, H1NC, H1NE, H4NE, H6NE, H101, H142, H151, H152 and H172 were introduced in calculated positions; the remaining amine and water H atoms were located by difference Fourier maps and held fixed in successive least-squares calculations. The z and U_{33} parameters are, in general, affected by the largest shift/e.s.d. and, in particular, unstable refinement is observed for the z coordinate of C 3 and C 4 of both molecules, probably due to the correlation effects introduced by pseudosymmetry.

Extensive use was made of the Cambridge Structural Database. Calculations were performed on Encore-GouldPowernode 6040 and Encore 91 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71306 (82 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1051]

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Arkowska, A., Grazynska, E., Kubiak, R. \& Paulus, H. (1989a). Inorg. Chim. Acta, 156, 175-176.
Arkowska, A., Grazynska, E., Kubiak, R. \& Paulus, H. (1989b). Inorg. Chim. Acta, 159, 153-155.
Bacchi, A., Ferranti, F. \& Pelizzi, G. (1993). Acta Cryst. C49, 11631169.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gilli, G. (1977). ABRAHAMS. Program for Calculating Half-Normal Probability Plots. Univ. di Ferrara, Italy.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1976). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1992). SHELXL92. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Ugozzoli, F. (1987). Comput. Chem. 11, 109-120.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1892-1895

Structure of Dicarbonyl($8,9,11,12,13,14-\eta)$ -12,19-dimethoxypodocarpa-8,11,13-triene]thiocarbonylchromium(0)

George R. Clark,* Richard C. Cambie, Malcolm D. King, P. Stewart Rutledge and
paul D. Woodgate*
Department of Chemistry, University of Auckland, Auckland, New Zealand

(Received 21 December 1992; accepted 26 April 1993)

Abstract

The structure determination of the title compound [dicarbonyl $\eta^{6}-1,2,3,4,4 \mathrm{a}, 9,10,10 \mathrm{a}-$ octahydro-6-meth-oxy-1-methoxymethyl-1,4a-dimethylphenanthrene)thiocarbonylchromium (0)] establishes that the $\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CS})$ moiety binds to the aromatic ring from the side opposite to that of the methyl group on C12, giving the α stereoisomer. The carbonyl and thiocarbonyl groups are oriented approximately halfway between the staggered and eclipsed positions.

Comment

The title compound (I) was prepared during a study of the cyclopentaannulation of diterpenoids mediated by organotransition-metal complexes. In

(I)
view of the fact that the preferred conformation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety in a related diterpenoid tricarbonylchromium complex controlled the regiochemistry of attack of cyano-stabilized carbanions
on the arene ring (Cambie, Erson, Gourdie, Rutledge \& Woodgate, 1988), it was of interest to determine the preferred conformation of the $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{CS}$ unit. Although two diastereoisomers are possible, and in fact a mixture of α and $\beta \mathrm{Cr}(\mathrm{CO})_{3}$ complexes was formed from treatment of the enantiopure parent diterpenoid with $\mathrm{Cr}(\mathrm{CO})_{6}$, a single diastereoisomer resulted after conversion of this mixture into the monothiocarbonyl analogue by CO replacement. In the absence of both stereoisomers of the derived thiocarbonyl complex, neither the configuration of the $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{CS}$ moiety relative to the plane of the aromatic ring, nor its preferred orientation, could be deduced unequivocally from NMR data. Therefore, a single-crystal X-ray determination was carried out in order to verify the structure of the complex.

The crystals contain one monomer of complex per asymmetric unit. The molecular geometry and atomic numbering scheme are shown in Fig. 1. The chromium coordinates to the thiocarbonyl and two carbonyl groups and bonds in the η^{6} mode to the aromatic ring of the podocarpate moiety. The geometry is readily visualized as being a variant of the 'piano stool' arrangement exemplified by benzenetricarbonylchromium (Bailey \& Dahl, 1965; Rees \& Coppens, 1973). The $\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CS})$ cluster lies below the aromatic ring (i.e. below relative to the methyl group on C 10) and the absolute configuration is thus α. All bonds and angles appear to be within normal ranges. The $\mathrm{Cr}-\mathrm{C}$ (aromatic) distances range from 2.186 (8) to 2.312 (6) \AA. The mean distance of $2.261 \AA$ is slightly longer than the corresponding mean distances of 2.240 and $2.246 \AA$ in the α and β stereoisomers of the tricarbonyl analogue derived from the related arene methyl 12-methoxypodo-carpa-8,11,13-trien-19-oate (Cambie, Clark, Gourdie, Rutledge \& Woodgate, 1985), and $2.23 \AA$ in the α stereoisomer of the corresponding compound lacking the 12-methoxy group, tricarbonyl($(8,9,11,12,13,14-\eta)$-methyl podocarpa-8,11,13-trien-19-oate]chromium (Cambie, Clark, Gallagher, Rutledge, Stone \& Woodgate, 1988).

Fig. 1. Molecular geometry and atomic numbering scheme for dicarbonyl[(8,9,11,12,13,14- η)-12,19-dimethoxypodocarpa-8,11,13-triene]thiocarbonylchromium(0).

Although the orientation of the π-acceptor ligands relative to the C atoms of the aromatic ring was ambiguous from NMR data, the X-ray structure shows that the carbonyl ligands are oriented approximately halfway between the staggered and eclipsed positions (Fig. 2). This conformation is the same as that found for the α stereoisomer of tricarbonyl[$(8,9,11,12,13,14-\eta)$-methyl 12 -methoxypo-docarpa-8,11,13-trien-19-oate]chromium, but bonds in the β isomer were more nearly eclipsed (Cambie, Clark, Gourdie, Rutledge \& Woodgate, 1985). The thiocarbonyl ligand in the present complex is directed towards the C atom of the aromatic ring carrying the methoxy substituent, C12.

Fig. 2. Relative orientation of the CO and CS groups.
There have been many papers describing the electronic and steric factors responsible for the particular orientation adopted by the $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety in $\mathrm{Cr}(\mathrm{CO})_{3}$ (arene) complexes. The most recent survey (Hunter, Shilliday, Furey \& Zaworotko, 1992) studied the structural manifestations of π-donor and π-acceptor substituents on the arene ring. They deduced that a π-donor substituent on the arene ring would cause the ipso C atom and its substituent to bend away from the $\mathrm{Cr}(\mathrm{CO})_{3}$ centre with associated loss of arene planarity. The accompanying variations in the $\mathrm{Cr}-\mathrm{C}$ (arene) distances gave, in their examples, average values of $\mathrm{Cr}-\mathrm{C}_{\text {ipso }} 2.349,-\mathrm{C}_{\text {ortho }}$ $2.248,-\mathrm{C}_{\text {meta }} 2.188 \AA$. The present complex follows this pattern remarkably closely considering the constraints of the fused ring systems of the podocarpate skeleton. The observed deviation from arene planarity has the ipso C12 $0.071 \AA$ from the best
plane through the other five arene C atoms in a direction away from the Cr . The observed $\mathrm{Cr}-$ $\mathrm{C} 12_{\text {ipso }}$, $-\mathrm{Cl}_{\text {orrho }}$ and $-\mathrm{Cl4}_{\text {meta }}$ distances are 2.302, 2.233 and $2.186 \AA$, respectively. Similar, though less pronounced effects are present in the α and β diastereoisomers of tricarbonyl($(8,9,11,12,13,14-\eta)$ methyl 12-methoxypodocarpa-8,11,13-trien-19-oate]chromium (Cambie, Clark, Gourdie, Rutledge \& Woodgate, 1985).
The $\mathrm{Cr}-\mathrm{CS}, \mathrm{C}-\mathrm{S}$ and $2 \times \mathrm{Cr}-\mathrm{CO}$ bond lengths of 1.773 (8), 1.573 (8), 1.829 (9) and 1.838 (8) \AA, respectively, are normal values. The $\mathrm{Cr}-\mathrm{CS}$ and C-S values compare well with 1.797 (2) and 1.570 (2) \AA in dicarbonyl (η^{6}-methyl benzoate)thiocarbonylchromium (Saillard, Le Borgne \& Grandjean, 1975), and 1.782 (9) and 1.585 (9) \AA in dicarbonylthiocarbonyltris(trimethoxyphosphine)chromium (Bird, Ismail \& Butler, 1985).
The shortest intermolecular contact is $\mathrm{C} 12 \cdots \mathrm{C} 18$ ($3.259 \AA$), with just two others shorter than $3.5 \AA$. The molecular packing is shown in Fig. 3.

Fig. 3. Stereopair diagrams showing the molecular packing in the unit cell.

Experimental

Crystal data
$\left[\mathrm{Cr}\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}\right)(\mathrm{CO})_{2}(\mathrm{CS})\right]$
$M_{r}=440.52$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=7.321$ (6) \AA
$b=12.790$ (1) \AA
$c=22.822$ (3) \AA
$V=2137.0$ (17) \AA^{3}
$Z=4$
$D_{x}=1.369 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.33(1) \mathrm{Mg} \mathrm{m}^{-3}$
Density measured by flotation in aqueous $\mathrm{KCl} / \mathrm{KI}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$2 \theta / \omega$ scans
Absorption correction: empirical
$T_{\min }=0.8985, \quad T_{\max }=$
1.0019

2563 measured reflections
2563 independent reflections
1360 observed reflections

$$
\begin{aligned}
& \quad[I>3 \sigma(I)] \\
& \theta_{\max }=27.96^{\circ} \\
& h=0 \rightarrow 9 \\
& k=0 \rightarrow 16 \\
& l=0 \rightarrow 30 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity variation: } 4 \%
\end{aligned}
$$

Refinement

Refinement on F
Final $R=0.0412$
$w R=0.0333$
$S=1.13$
1360 reflections
314 parameters
Only coordinates of H atoms refined
$(\Delta / \sigma)_{\text {max }}=0.249\left(U_{13}\right.$ of O2)
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)
$w=1.5735 /\left[\sigma^{2}(F)\right.$
$\left.+0.000127 F^{2}\right]$
Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \Sigma_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Cr	-0.28311 (14)	-0.63995 (8)	-0.13346 (4)	2.86 (4)
S	-0.6134 (4)	-0.5539 (2)	-0.04445 (13)	7.39 (2)
O1	-0.0649 (9)	-0.4755 (5)	-0.0723 (3)	6.17 (4)
O2	-0.4207 (9)	-0.4721 (5)	-0.2137 (3)	6.64 (4)
O3	-0.5400 (7)	-0.8536 (4)	-0.11338 (18)	3.92 (3)
O4	0.2143 (9)	-0.6752 (4)	-0.4366 (2)	5.95 (4)
C1	-0.3174 (11)	-0.7038 (7)	-0.3062 (3)	4.02 (4)
C2	-0.2816 (13)	-0.6807 (7)	-0.3707 (3)	4.80 (5)
C3	-0.1309 (13)	-0.6020 (7)	-0.3783 (3)	4.49 (5)
C4	0.0515 (10)	-0.6324 (6)	-0.3496 (3)	3.23 (4)
C5	0.0115 (9)	-0.6632 (5)	-0.2847 (3)	2.72 (3)
C6	0.1823 (10)	-0.6973 (7)	-0.2503 (3)	3.79 (4)
C7	0.1467 (10)	-0.6927 (6)	-0.1850 (3)	4.08 (4)
C8	-0.0369 (10)	-0.7312 (6)	-0.1668 (3)	3.06 (4)
C9	-0.1792 (10)	-0.7488 (5)	-0.2071 (3)	2.61 (4)
C10	-0.1460 (9)	-0.7410 (5)	-0.2740 (3)	2.79 (4)
C11	-0.3502 (11)	-0.7842 (5)	-0.1861 (3)	2.45 (3)
C12	-0.3751 (10)	-0.8117 (5)	-0.1267 (3)	3.05 (4)
C13	-0.2347 (12)	-0.7910 (5)	-0.0869 (3)	3.19 (4)
C14	-0.0718(12)	-0.7515 (7)	-0.1076 (3)	3.29 (4)
C18	0.1733 (11)	-0.5349 (6)	-0.3498 (3)	5.26 (5)
C19	0.1464 (13)	-0.7186 (7)	-0.3844 (3)	4.08 (5)
C20	-0.1056 (12)	-0.8536 (7)	-0.2924 (3)	3.61 (4)
C21	-0.5714 (15)	-0.8809 (9)	-0.0539 (4)	5.71 (6)
C22	0.3034 (13)	-0.7501 (8)	-0.4718 (3)	6.90 (7)
C23	-0.4621 (11)	-0.5982 (6)	-0.0866 (3)	4.18 (4)
C24	-0.1461 (12)	-0.5388 (6)	-0.0977 (4)	3.79 (4)
C25	-0.3664 (12)	-0.5393 (6)	-0.1844 (3)	4.04 (4)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C} 8-\mathrm{Cr}$	$2.278(7)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.503(11)$
$\mathrm{C} 9-\mathrm{Cr}$	$2.312(6)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.536(10)$
$\mathrm{C} 11-\mathrm{Cr}$	$2.256(7)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.562(8)$
$\mathrm{C} 12-\mathrm{Cr}$	$2.302(6)$	$\mathrm{C} 18-\mathrm{C} 4$	$1.533(9)$
$\mathrm{C} 13-\mathrm{Cr}$	$2.233(7)$	$\mathrm{C} 19-\mathrm{C} 4$	$1.525(10)$
$\mathrm{C} 14-\mathrm{Cr}$	$2.186(8)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.539(10)$
$\mathrm{C} 23-\mathrm{Cr}$	$1.773(8)$	$\mathrm{C} 10-\mathrm{C} 5$	$1.543(9)$
$\mathrm{C} 24-\mathrm{Cr}$	$1.829(9)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.515(10)$
$\mathrm{C} 25-\mathrm{Cr}$	$1.838(8)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.490(10)$
$\mathrm{C} 23-\mathrm{S}$	$1.573(8)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.408(9)$

$\mathrm{C} 24-\mathrm{O} 1$	$1.160(8)$	$\mathrm{C} 14-\mathrm{C} 8$	$1.399(9)$
$\mathrm{C} 25-\mathrm{O} 2$	$1.160(8)$	$\mathrm{C} 10-\mathrm{C} 9$	$1.548(8)$
$\mathrm{C} 12-\mathrm{O} 3$	$1.356(8)$	$\mathrm{C} 11-\mathrm{C} 9$	$1.416(9)$
$\mathrm{C} 21-\mathrm{O} 3$	$1.420(9)$	$\mathrm{C} 20-\mathrm{C} 10$	$1.528(10)$
$\mathrm{C} 19-\mathrm{O} 4$	$1.406(8)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.411(9)$
$\mathrm{C} 22-\mathrm{O} 4$	$1.410(9)$	$\mathrm{C} 13-\mathrm{C} 12$	$1.397(10)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.523(10)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.379(10)$
$\mathrm{C} 10-\mathrm{C} 1$	$1.531(9)$		
$\mathrm{C} 24-\mathrm{Cr}-\mathrm{C} 23$	$85.6(3)$	$\mathrm{C} 14-\mathrm{C} 8-\mathrm{C} 9$	$117.8(7)$
$\mathrm{C} 25-\mathrm{Cr}-\mathrm{C} 23$	$85.7(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$121.2(6)$
$\mathrm{C} 25-\mathrm{Cr}-\mathrm{C} 24$	$88.2(3)$	$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$118.9(6)$
$\mathrm{C} 21-\mathrm{O} 3-\mathrm{C} 12$	$117.2(6)$	$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10$	$119.6(6)$
$\mathrm{C} 22-\mathrm{O} 4-\mathrm{C} 19$	$112.2(6)$	$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 1$	$109.6(6)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2$	$112.6(6)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$	$111.4(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$111.6(7)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$108.3(5)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$114.8(6)$	$\mathrm{C} 20-\mathrm{C} 10-\mathrm{C} 1$	$108.6(6)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$107.7(5)$	$\mathrm{C} 20-\mathrm{C} 10-\mathrm{C} 5$	$114.8(6)$
$\mathrm{C} 18-\mathrm{C} 4-\mathrm{C} 3$	$107.4(6)$	$\mathrm{C} 20-\mathrm{C} 10-\mathrm{C} 9$	$103.9(5)$
$\mathrm{C} 18-\mathrm{C} 4-\mathrm{C} 5$	$108.4(5)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$	$121.3(7)$
$\mathrm{C} 19-\mathrm{C} 4-\mathrm{C} 3$	$110.9(6)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 3$	$115.4(6)$
$\mathrm{C} 19-\mathrm{C} 4-\mathrm{C} 5$	$113.3(6)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{O} 3$	$125.7(6)$
$\mathrm{C} 19-\mathrm{C} 4-\mathrm{C} 18$	$108.8(6)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$118.8(7)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$113.8(6)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$118.9(6)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 4$	$117.0(5)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 8$	$123.8(7)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6$	$110.1(5)$	$\mathrm{C} 4-\mathrm{C} 19-\mathrm{O} 4$	$108.5(6)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$110.6(6)$	$\mathrm{S}-\mathrm{C} 23-\mathrm{Cr}$	$176.0(5)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$114.6(6)$	$\mathrm{O} 1-\mathrm{C} 24-\mathrm{Cr}$	$176.2(8)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$122.6(6)$	$\mathrm{O} 2-\mathrm{C} 25-\mathrm{Cr}$	$176.1(7)$
$\mathrm{C} 14-\mathrm{C} 8-\mathrm{C} 7$	$119.6(7)$		

A solution of hexacarbonylchromium(0) (6.21 mmol) and 12,19-dimethoxypodocarpa-8,11,13-triene (5.18 mmol) in dibutyl ether/THF ($162 \mathrm{ml}, 12: 1$) was heated under reflux for 24 h . Workup gave a mixture (7.3:1) of the α and β diastereoisomers of tricarbonyl[$(8,9,11,12,13,14-\eta)$-12,19-dimethoxypodocarpa-$8,11,13$-triene]chromium(0) (98%). A solution of this mixture (0.19 mmol) and cis-cyclooctene (7.68 mmol) in benzene (8 ml) was irradiated (366 nm) under nitrogen at room temperature for 25 min . A solution of $\mathrm{Ph}_{3} \mathrm{P}(0.23 \mathrm{mmol})$ in $\mathrm{CS}_{2}(2 \mathrm{ml})$ was then added to the red solution and the mixture was left standing without irradiation overnight. Filtration through Celite followed by flash chromatography (silica gel, hexane/diethyl ether) gave what is now established as the α diastereoisomer of dicarbonyl $[(8,9,11,12,13,14-\eta)$-12,19-dimethoxypodocarpa-$8,11,13$-triene]thiocarbonylchromium $(0)(63 \%)$ in the form of orange needles; m.p. 378-380 K.

The infrared spectrum showed strong absorptions at 1941 and $1889 \mathrm{~cm}^{-1}$ (CO), and at $1194 \mathrm{~cm}^{-1}$ (CS). The NMR spectra confirmed the presence of a single stereoisomer: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.05, \mathrm{H}(3 \mathrm{ax}.) ; 1.08, \mathrm{H}(18)_{3} ; 1.27, \mathrm{H}(20)_{3} ; 1.25-1.32, \mathrm{H}(1 \mathrm{ax}$.$) ,$ $\mathrm{H}(5) ; 1.62-1.72, \mathrm{H}(2 \mathrm{ax}),. \mathrm{H}(2 \mathrm{eq}),. \mathrm{H}(6 \mathrm{ax}.) ; 1.83, \mathrm{H}(3 \mathrm{eq}$. 1.93-2.01, H(1 eq.), H(6 eq.); 2.61, H(7 ax.); 2.63, H(7 eq.); $3.24, \mathrm{H}(19) ; 3.31,19-\mathrm{OCH}_{3} ; 3.41, \mathrm{H}(19) ; 3.68,12-\mathrm{OCH}_{3} ; 5.28$, $\mathrm{H}(13) ; 5.44, \mathrm{H}(11) ; 5.60, \mathrm{H}(14) ; \delta \mathrm{c} 18.3, \mathrm{C}(2) ; 18.7, \mathrm{C}(6) ; 27.0$, $\mathrm{C}(20) ; 27.3, \mathrm{C}(7) ; 27.5, \mathrm{C}(18) ; 35.5, \mathrm{C}(3) ; 36.6, \mathrm{C}(1) ; 37.4$, $\mathrm{C}(10) ; 37.8, \mathrm{C}(4) ; 47.7, \mathrm{C}(5) ; 56.0,12-\mathrm{OCH}_{3} ; 59.3,19-\mathrm{OCH}_{3}$; 76.1, C(19); 81.6, C(11); 81.8, C(13); 99.3, C(14); 105.9, C(8); 131.8, C(9); 143.5, C(12); 231.8, 231.9, (CO); 345.9, (CS). m/z $440(M, 14), 384$ ($M-2 \mathrm{CO}, 100$), 340 ($M-2 \mathrm{CO}-\mathrm{CS}, 63$), 288 [$\left.M-\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{CS}, 80\right]$.

It was expected that the stereochemistry of the single monothiocarbonyl isomer isolated from the ligand-exchange reaction would reflect the stereochemistry of the major α isomer present in the precursor mixture of $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes, so confirmation was sought by determination of the crystal structure.

An analogous refinement with inverted coordinates refined to $R=0.0471$. Therefore the published atomic positions represent the true absolute structure of the molecule.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71286 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HL1032]

References

Bailey, M. F. \& Dahl, L. F. (1965). Inorg. Chem. 4, 1314-1319.
Bird, P. H., Ismail, A. A. \& Butler, I. S. (1985). Inorg. Chem. 24. 2911-2914.
Cambie, R. C., Clark, G. R., Gallagher, S. R., Rutledge, P. S., Stone, M. J. \& Woodgate, P. D. (1988). J. Organomet. Chem. 342, 315-337.
Cambie, R. C., Clark, G. R., Gourdie, A. C., Rutiedge, P. S. \& Woodgate, P. D. (1985). J. Organomet. Chem. 297, 177-184.
Cambie, R. C., Erson, A. D., Gourdie, A. C., Rutledge, P. S. \& Woodgate, P. D. (1988). J. Organomet. Chem. 348, 317-331.
Hunter, A. D., Shilliday, L., Furey, W. S. \& Zaworotko, M. J. (1992). Organometallics, 11, 1550-1560.

Rees, B. \& Coppens, P. (1973). Acta Cryst. B29, 2516-2528.
Saillard, J.-Y., Le Borgne, G. \& Grandjean, D. (1975). J. Organomet. Chem. 94, 409-416.

Acta Cryst. (1993). C49, 1895-1897

Structure of Ethylenediammonium catena-Poly[tris(2-pyridinecarboxylato$\kappa N, \kappa O$)holmate- μ-2-pyridinecarboxylato$\kappa N, \kappa O: \kappa O$] Hexahydrate

Przemyslaw Starynowicz

Institute of Chemistry, University of Wroclaw, 14 Joliot-Curie St, 50-383 Wrocław, Poland

(Received 21 January 1993; accepted 6 May 1993)

Abstract

The structure consists of polymeric complex anions, ethylenediammonium cations and waters of crystallization. The Ho atoms are surrounded by four N atoms and five carboxylic O atoms. The compound is isomorphous with a previously published neodymium complex.

\section*{Comment}

The title compound is isomorphous with a neodymium compound, whose structure has been published previously (Starynowicz, 1991). This work was undertaken to obtain precise information about bond lengths within the holmium coordination sphere and their variation with a change of lanthanide cation.

